
Medical Image Analysis 75 (2022) 102266 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Assessing clinical progression from subjective cognitive decline to 

mild cognitive impairment with incomplete multi-modal neuroimages 

Yunbi Liu 

a , b , d , Ling Yue 

c , ∗, Shifu Xiao 

c , Wei Yang 

b , Dinggang Shen 

a , Mingxia Liu 

a , ∗

a Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 
b School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China 
c Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China 
d School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P.R. China 

a r t i c l e i n f o 

Article history: 

Received 30 October 2020 

Revised 4 October 2021 

Accepted 7 October 2021 

Available online 14 October 2021 

Keywords: 

Subjective cognitive decline 

Conversion prediction 

Image synthesis 

Multi-modal neuroimage 

a b s t r a c t 

Accurately assessing clinical progression from subjective cognitive decline (SCD) to mild cognitive impair- 

ment (MCI) is crucial for early intervention of pathological cognitive decline. Multi-modal neuroimaging 

data such as T1-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET), 

help provide objective and supplementary disease biomarkers for computer-aided diagnosis of MCI. How- 

ever, there are few studies dedicated to SCD progression prediction since subjects usually lack one or 

more imaging modalities. Besides, one usually has a limited number (e.g., tens) of SCD subjects, neg- 

atively affecting model robustness. To this end, we propose a Joint neuroimage Synthesis and Repre- 

sentation Learning (JSRL) framework for SCD conversion prediction using incomplete multi-modal neu- 

roimages. The JSRL contains two components: 1) a generative adversarial network to synthesize missing 

images and generate multi-modal features, and 2) a classification network to fuse multi-modal features 

for SCD conversion prediction. The two components are incorporated into a joint learning framework 

by sharing the same features, encouraging effective fusion of multi-modal features for accurate predic- 

tion. A transfer learning strategy is employed in the proposed framework by leveraging model trained on 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI and fluorodeoxyglucose PET from 863 

subjects to both the Chinese Longitudinal Aging Study (CLAS) with only MRI from 76 SCD subjects and 

the Australian Imaging, Biomarkers and Lifestyle (AIBL) with MRI from 235 subjects. Experimental results 

suggest that the proposed JSRL yields superior performance in SCD and MCI conversion prediction and 

cross-database neuroimage synthesis, compared with several state-of-the-art methods. 

© 2021 Elsevier B.V. All rights reserved. 

1

p

m

t

r

i  

r

s

s

c

h

j

L

d

o

t

p

2

2  

m

a

b

p

s

2

s

h

1

. Introduction 

Alzheimer’s disease (AD) is characterized by progressive im- 

airment of memory and cognitive functions, affecting an esti- 

ated 47 million people worldwide ( Jack et al., 2011; Associa- 

ion et al., 2018 ). The Chinese Longitudinal Aging Study (CLAS) 

eported that 4 . 5% of people older than 60 have AD dementia 

n China ( Xiao et al., 2016 ). There is no effective cure for AD-

elated dementia, while early intervention may delay the progres- 

ion. Hence, identifying AD at its early or preclinical stage is es- 

ential for drug development and timely intervention of AD-related 

ognitive decline. Previous studies have proven that AD pathology 

as already been ongoing in a long preclinical phase, such as sub- 

ective cognitive decline (SCD) ( Jack et al., 2010 ) during which in- 
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ividuals have self-reported cognitive decline but no impairment 

n standardized cognitive tests ( Jessen et al., 2014a ). Considering 

hat SCD individuals are at increased risk of developing AD and its 

rodromal stage (i.e., mild cognitive impairment, MCI) ( Jack et al., 

013; Barnes et al., 2006; Amariglio et al., 2012; Buckley et al., 

016b; 2016a; Kryscio et al., 2014; Liu et al., 2017 ), it is clinically

eaningful to predict the progression of SCD for drug development 

nd possible intervention of AD-related cognitive decline. 

Increasing evidence has shown that SCD is related to AD 

iomarkers, such as reduced glucose metabolism uptake on 

ositron emission tomography (PET) and brain changes revealed by 

tructural magnetic resonance imaging (MRI) ( van der Flier et al., 

004; Striepens et al., 2010; Yue et al., 2018 ). Several studies have 

hown that SCD individuals are biologically different from cogni- 

ively normal (CN) subjects in terms of neuroimaging biomark- 

rs ( Stewart et al., 2008; Scheef et al., 2012; Jessen et al., 2014b; 

ue et al., 2021 ). To the best of our knowledge, this is among the

rst attempts dedicated to multi-modal neuroimaging-based SCD 

https://doi.org/10.1016/j.media.2021.102266
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102266&domain=pdf
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Fig. 1. Illustration of (a) conventional multi-modal methods for separate neuroimage synthesis and representation learning and (b) our Joint neuroimage Synthesis and 

Representation Learning (JSRL) framework using incomplete multi-modal neuroimages (i.e., MRI and PET). 
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rogression/conversion prediction, i.e., predicting whether an SCD 

ubject would convert to MCI within a period. 

Existing studies have shown that MRI and PET contain 

omplementary information for early diagnosis of brain disor- 

ers ( Kawachi et al., 2006; Gray et al., 2013; Zu et al., 2016; Liu

t al., 2018; Perrin et al., 2009; Zhou et al., 2018; Pan et al., 2021 ).

t is usually challenging to collect complete multi-modal data from 

ach subject in clinical practice, caused by patients’ dropout or 

ailed scans. Compared with MRI, it is generally more difficult to 

btain PET data due to the relatively higher cost of PET scanning 

nd other issues such as patients’ concerns about radioactive expo- 

ure. As shown in Fig. 1 (a), existing multi-modal methods usually 

rst impute missing neuroimages/features, such as employing an 

mage generator to impute the missing modality ( Li et al., 2014; 

ikka et al., 2018; Sharma and Hamarneh, 2019 ), and then perform 

eature learning and classification ( Lassila et al., 2018; Cheng et al., 

015b; Campos et al., 2015; Cheng et al., 2017; Liu et al., 2014b; 

i et al., 2019; Pan et al., 2020 ). They treat imputation and multi-

odal feature learning as two separate tasks, which may lead to 

uboptimal performance. Besides, we usually have a very limited 

umber (e.g., tens) of subjects with SCD ( Yue et al., 2021 ), bring-

ng difficulty in constructing robust models and negatively affect- 

ng prediction performance ( Cheng et al., 2015a; 2017 ). 

To address these issues, we propose a Joint image Synthesis 

nd Representation Learning (JSRL) framework for SCD conversion 

rediction based on incomplete multi-modal (e.g., MRI and PET) 

ata. As shown in Fig. 1 (b), our JSRL integrates image synthesis 

nd multi-modal representation learning into a unified framework. 

he key idea is that these two tasks share the same multi-modal 

eatures (derived from the image generator) for image synthesis 

nd classification, encouraging effective feature fusion for accu- 

ate prediction. To address the limited data problem, we further 

ropose a transfer learning strategy for SCD conversion prediction 

y leveraging the JSRL learned from a large-scale ADNI database 

with MRI and PET acquired from 863 subjects) to a small-scale 

CD database (with only MRI from 76 subjects). The hypothesis is 

hat, since SCD may be the preclinical stage of MCI/AD and AD is 

 progressive neurodegenerative disease, the discriminative brain 

hanges between AD/MCI and cognitively normal subjects are po- 

ential biomarkers for SCD conversion prediction. 

A preliminary version of this manuscript was previously pub- 

ished ( Liu et al., 2020 ). This paper extends the preliminary ver- 

ion substantially with the following improvements. 1) We have 

dded more experiments to compare our JSRL with its five vari- 

nts as well as two data imputation methods to demonstrate the 

ffectiveness of the proposed approach. 2) Besides the original task 
2 
f SCD conversion prediction, we have applied our method to a 

elated but different task (i.e., MCI conversion prediction). 3) Be- 

ides the initially used two datasets, i.e., ADNI ( Jack et al., 2008 )

nd CLAS ( Xiao et al., 2016 ), we have extended our work to gen-

rate ADNI-like PET scans for the Australian Imaging, Biomarkers 

nd Lifestyle (AIBL) dataset with original amyloid PET ( Ellis et al., 

009 ). 

The contributions of this work are summarized as follows. 

• A joint image synthesis and representation learning (JSRL) 

framework is developed for SCD conversion prediction using in- 

complete multi-modal data. This is different from previous ap- 

proaches that discard data-missing subjects ( Young et al., 2013; 

Suk et al., 2014 ) or treat image/feature imputation and multi- 

modal feature learning as two separate tasks ( Campos et al., 

2015; Pan et al., 2020 ). 
• A transfer learning strategy is developed to handle the limited 

data problem by leveraging JSRL learned from ADNI to CLAS 

and AIBL. Due to the lack of SCD subjects in ADNI, a reasonable 

label transfer strategy is proposed to partition training data in 

ADNI. 
• Extensive experiments have been performed to validate the ef- 

fectiveness of JSRL in SCD conversion prediction, MCI conver- 

sion prediction, and neuroimage synthesis. 

The remainder of this paper is organized as follows. 

ection 2 reviews the most relevant studies. In Section 3 , we 

ntroduce the materials and proposed method. In Section 4 , we 

ompare the proposed method with several competing methods 

or SCD conversion prediction, analyze the influence of several 

ajor components of JSRL, and apply JSRL to MCI conversion 

rediction and cross-database neuroimage synthesis. We further 

ompare our method with previous studies and analyze the lim- 

tations of the current work in Section 5 . Finally, this paper is 

oncluded in Section 6 . 

. Related work 

This section briefly reviews the most related work, includ- 

ng studies on subjective cognitive decline (SCD), multi-modal 

euroimage analysis, and transfer learning for early diagnosis of 

lzheimer’s disease (AD) and related disorders. 

.1. Studies on subjective cognitive decline 

In recent years, more attention has been drawn to subjective 

ognitive decline. Some interesting findings have been found about 
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CD. Jessen et al. (2014a) proposed to list several features associ- 

ted with SCD, i.e. , age at onset of SCD ≥ 60 , which increases the

resence likelihood of preclinical AD. Caselli et al. (2014) compared 

elf-based and informant-based SCD to distinguish emotional fac- 

ors from early-stage AD, and found that those with incident MCI 

enerally self-endorsed decline earlier than informants (e.g., their 

amily members or friends). Some studies also found that SCD sub- 

ects with normal cognition might undergo AD pathology changes 

elated to their neuroimaging biomarkers, which may gradually 

rogress to the next stage, such as MCI (i.e., the prodromal phase 

f AD) ( Yue et al., 2018; Striepens et al., 2010; Jack et al., 2010 ).

ith structural MRIs, Striepens et al. (2010) reported total hip- 

ocampus volume loss in SCD cohorts. Yue et al. (2018) found 

 ladder-shaped difference of left-larger-than-right asymmetry in 

he amygdala (i.e., MCI > SCD > CN) using MRIs. However, only a 

ew neuroimage-based studies attempted to predict the conver- 

ion from SCD to MCI within a follow-up time ( Yue et al., 

021; Liu et al., 2020 ). In ( Yue et al., 2021 ), the authors pro-

osed a simple prediction model with only five (three clini- 

al and two structural MRI-derived) features to identify pSCD 

rom sSCD, which is the first MRI-based study for SCD anal- 

sis. Their experimental results suggested that SCD individuals 

ho could develop to MCI might be identified from sSCD with 

 combination of a few clinical information and structural MRI- 

ased neuroimaging biomarkers. In this work, we propose to con- 

truct a multi-modal neuroimage-based model for SCD conversion 

rediction. 

.2. Multi-Modal neuroimage analysis 

Previous studies have shown that different modalities (e.g., MRI 

nd PET) can provide complementary information for identifying 

isease-related brain changes ( Kohannim et al., 2010; Jack et al., 

008; Liu et al., 2015 ). In recent years, many researchers focused 

n multi-modal studies for computer-aided diagnosis of brain dis- 

ases ( Pan et al., 2020; Cheng et al., 2015b; Liu et al., 2014b;

oung et al., 2013; Hinrichs et al., 2011; Suk et al., 2014; Shi 

t al., 2017; Zu et al., 2016; Zhou et al., 2020; Thung et al., 2017;

or and Moradi, 2016 ). For example, a Gaussian process classifi- 

ation method was developed, by using structural MRI, PET, cere- 

ral spinal fluid (CSF) and apolipoprotein E (APOE) data to identify 

CI patients who will convert to AD within a period ( Young et al.,

013 ). Suk et al. (2014) developed a systematic method for a joint 

eature representation from paired patches of MRI and PET with 

 multi-modal Deep Boltzmann Machine (DBM). These methods 

ake full of multi-modal information and achieve good perfor- 

ance. However, they usually need complete multi-modal neu- 

oimages, making their methods less practical since collecting 

omplete multi-modal data for each subject is usually expen- 

ive and time-consuming in clinical practice. To address the is- 

ue of incomplete data, some imputation/completion techniques 

ave been utilized, such as Zero completion, k -nearest neigh- 

or (KNN) and image generation by employing an image gener- 

tor ( Campos et al., 2015; Van Tulder and de Bruijne, 2015; Li 

t al., 2014; Sikka et al., 2018; Sharma and Hamarneh, 2019 ). Based 

n synthesized data, multi-modal prediction models can handle 

hose subjects with incomplete data ( Campos et al., 2015; Cheng 

t al., 2017; Pan et al., 2020 ). For example, Pan et al. (2020) pro-

osed a hybrid generative adversarial network (HGAN) to impute 

issing neuroimages, and then developed a spatially-constrained 

isher representation network (SCFR) to extract statistical de- 

criptors of neuroimages for disease diagnosis. However, these 

ethods usually perform feature selection of each modality in- 

ividually, ignoring the underlying association between MRI and 

ET. 
3 
.3. Transfer learning for AD-related disease diagnosis 

Computer-aided methods for identifying stable SCD (sSCD) and 

rogressive SCD (pSCD) individuals are similar to those used for 

dentifying MCI subjects who will convert to AD within a period. 

or early diagnosis of AD (e.g., SCD and MCI), the number of train- 

ng samples is usually very limited, while the feature dimension is 

ery high. This so-called small-sample-size problem has been one 

f the main challenges in neuroimaging data analysis, which may 

ead to overfitting issues. Many machine learning methods have 

een proposed to address this issue via transfer learning ( Cheng 

t al., 2015b; 2017; Filipovych and Davatzikos, 2011; Da et al., 2014; 

ian et al., 2020; Khan et al., 2019 ). Cheng et al. (2015b) devel-

ped a domain transfer feature selection method for MCI conver- 

ion prediction by using auxiliary data (i.e., AD and cognitively nor- 

al subjects) for discriminative feature selection. They further pro- 

osed a multi-domain transfer learning framework for the early di- 

gnosis of AD by using multiple auxiliary domains ( Cheng et al., 

017 ). Lian et al. (2020) verified the effectiveness of transferred 

nowledge for model training, in which the task of MCI conver- 

ion prediction was implicitly enriched by utilizing the supple- 

entary information of AD and NC subjects. These transfer learn- 

ng methods suggest that discriminative brain changes from cogni- 

ively normal (CN) to AD are potentially related to MCI, considering 

D is a progressive neurodegenerative disease. Therefore, knowl- 

dge learned from AD-related data can also be used to promote 

he performance of SCD conversion prediction. 

. Materials and methodology 

In this section, we first introduce studied subjects and image 

re-processing, and then present the proposed method in detail. 

.1. Studied subjects and image pre-processing 

Three datasets are used in this work: 1) the Chinese Lon- 

itudinal Aging Study (CLAS) database, 2) the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI-1 and ADNI-2) database, 

nd 3) Australian Imaging, Biomarkers and Lifestyle (AIBL) 

atabase ( Ellis et al., 2009 ). Baseline data in ADNI are used in this

ork, while subjects that appear in both ADNI-1 and ADNI-2 are 

emoved from ADNI-2 for independent evaluation. 

CLAS . It contains only 3T T1-weighted MRIs acquired from 76 

CD subjects. Following ( Abdulrab and Heun, 2008 ), the SCD group 

n CLAS meets the following criteria: 1) the onset age of > 60 years 

ld; 2) the presence of gradual memory decline persisting for ≥ 6 

onths; 3) objective memory performance within normal range. 

ccording to follow-up outcomes after 7 years, SCD subjects are 

ategorized into stable SCD (sSCD) and progressive SCD (pSCD). At 

he follow-up visit time (i.e., 7 years), 24 SCD subjects converted 

o MCI within 84 months after baseline, 52 SCD subjects kept cog- 

itive normal, and none of them converted to AD at the follow-up 

isit. Therefore, there are 24 sSCD and 52 pSCD in CLAS. 

ADNI-1 & ADNI-2 . The ADNI-1 and ADNI-2 datasets contain all 

aseline T1-weighted MR images and partial fluorodeoxyglucose 

ositron emission tomography (FDG-PET) images from 1) AD pa- 

ients, 2) cognitively normal (CN) subjects, 3) MCI individuals, and 

) SCD (also called subjective memory complaint) subjects. There 

re a total of 1,145 subjects with complete MRI and FDG-PET scans 

rom the baseline ADNI-1 and ADNI-2 datasets. Following ( Hor and 

oradi, 2016; Lian et al., 2020; Pan et al., 2020 ), we use the 36-

onth window to define the conversion of SCD and MCI subjects 

n ADNI-1 and ADNI-2. For example, if an SCD subject converts 

o MCI at the 24-th month after baseline and does not have data 

t the 36-month, we treat it as pSCD because it converts to MCI 

ithin 36 months. Only 16 SCD subjects have definite conversion 
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Table 1 

Demographic information of studied subjects in the task of SCD conversion prediction. The values are denoted as “mean 

± standard deviation”. F/M: Female/Male. 

Phase Dataset Category Gender(F/M) Age MMSE 

Training ADNI-1 & ADNI-2 sCN 95/110 74.0 ±5.5 28.9 ±1.1 

pCN 11/18 78.2 ±5.9 29.2 ±0.9 

MCI 254/375 72.9 ±7.5 27.5 ±1.8 

Test CLAS sSCD 27/25 68.6 ±7.2 27.7 ±2.2 

pSCD 13/11 71.3 ±6.6 26.8 ±2.6 

Table 2 

Demographic information of studied subjects in the task of MCI conversion prediction. 

Phase Dataset Category Gender(F/M) Age MMSE 

Training ADNI-1 & ADNI-2 sCN 95/110 74.0 ±5.5 28.9 ±1.1 

sMCI 129/196 71.9 ±7.6 27.9 ±1.7 

pMCI 67/97 74.0 ±6.9 26.8 ±1.6 

AD 100/145 74.9 ±7.8 23.5 ±2.2 

Test ADNI-1 & ADNI-2 sMCI 24/42 74.3 ±7.9 27.7 ±1.9 

pMCI 37/56 74.5 ±7.2 26.5 ±1.7 
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esults within 36 months (i.e., 11 pSCD and 5 sSCD) in ADNI, and 

hey only have MRI scans. Similarly, we divide CNs into stable CN 

sCN) and progressive CN (pCN), where pCN would convert to MCI 

ithin 36 months and sCN remains stable. The MCI subjects in 

DNI-1 and ADNI-2 are further divided into stable MCI (sMCI) and 

rogressive MCI (pMCI), where subjects with pMCI would convert 

o AD within 36 months after baseline and subjects with sMCI re- 

ain stable. 

AIBL . A total of 235 subjects with paired T1-weighted struc- 

ural MRI and Flutemetamol/Pittsburgh compound B (Flute/PIB)- 

ET scans were randomly selected from AIBL. It is worth noting 

hat no FDG-PET data is available in this dataset. So this dataset 

s only used to evaluate image synthesis performance of the pro- 

osed method, and is not involved in the task of SCD/MCI conver- 

ion prediction. 

Tables 1 and 2 show demographic and clinical information of 

tudied subjects in two tasks, i.e. , SCD conversion prediction and 

CI conversion prediction. In the task of SCD conversion predic- 

ion, we add MCI subjects with uncertain conversion results as 

he negative category considering the prediction from SCD to MCI, 

hich helps to increase the sample size. In MCI conversion pre- 

iction, we use only MCI subjects (i.e., pMCI and sMCI) that have 

lear definitions on whether they would convert to AD within 36 

onths after baseline time. 

In this work, all training subjects have paired MRI and PET 

cans, but the test CLAS and ADNI data have only MRI scans. All 

RI scans were pre-processed through a standard pipeline, includ- 

ng the following steps: 1) skull-stripping by calling the BET func- 

ion in Freesurfer ( Fischl, 2012 ), 2) intensity inhomogeneity cor- 

ection using Freesurfer, and 3) spatial normalization to the Mon- 

real Neurological Institute (MNI) space using the Statistical Para- 

etric Mapping (SPM) 1 ( Ashburner and Friston, 2005 ). For each 

ET image, we first linearly aligned it to its corresponding MRI 

can, and then normalized its intensity (via min-max scaling), fol- 

owed by spatial normalization to the MNI space (using the same 

ransformation as the one used to spatially normalize the corre- 

ponding MRI). Thus, each pair of MRI and PET for the same sub- 

ect will have spatial correspondence. After pre-processing, all MRI 

nd PET scans will have the same size as the MNI template (i.e., 

81 × 217 × 181 with 1 mm isotropic voxels). 
1 fil.ion.ucl.ac.uk/spm/software/ . 

n

f  

l

y

4 
.2. Proposed method 

The proposed JSRL is illustrated in Fig. 2 , consisting of 1) an im- 

ge synthesis subnetwork (IS) to synthesize missing neuroimages 

nd generate multi-modal features and 2) a representation learn- 

ng subnetwork (RL) for multi-modal feature fusion, feature learn- 

ng, and classification/prediction. These two subnetworks share the 

ame imaging features, e.g., [ F M1 , F M2 ] for MRI and [ F P1 , F P2 ] for

ET, encouraging that the association between MRI and PET can 

e effectively modeled and the multi-modal representations are 

rediction-oriented. At the training phase, our JSRL network is 

rained on 863 subjects with complete MRI and PET from the ADNI 

ataset. At the test phase, the trained model is directly applied to 

6 subjects with only MRI from the CLAS dataset. Besides, a label 

ransfer strategy is proposed to leverage the relatively large-scale 

raining data in the SCD-related domain (i.e., ADNI) to aid the SCD 

onversion prediction task in the small-scale CLAS dataset. 

.2.1. Problem formulation 

In this work, we aim to utilize the domain knowledge learned 

rom ADNI with MRI and PET scans to aid the SCD conver- 

ion prediction with only MRI in CLAS. Let I M 

denote the do- 

ain of MRI scans and I P be the domain of PET images. We de- 

ote a set of subjects (with paired MRI and PET scans) as D = 

 ( x M 

, x P ) | x M 

∈ I M 

, x P ∈ I P } . If one has MRI but no PET data, an im- 

ge generator G M 

: I M 

→ I P trained on paired multi-modal data can 

mpute missing PET based on its corresponding MRI. With real MRI 

nd synthetic PET, our multi-modal classification/prediction model 

s formulated as 

 = C ( x M 

, G M 

( x M 

) ) , (1) 

here y is the class label (e.g., stable SCD or progressive SCD), and 

is a classifier that tells whether an SCD subject will convert to 

CI within a certain period. As shown in Fig. 1 (a), conventional 

ethods usually treat image synthesis and representation learning 

s two separate tasks, by first learning G M 

and then training C in- 

ependently. The proposed JSRL incorporated image synthesis and 

epresentation learning into a unified framework, by sharing multi- 

odal features (generated by G M 

) between the IS and the RL sub- 

etworks. Based on the shared multi-modal features (i.e., [ F M1 , F M2 ] 

or MRI, and [ F P1 , F P2 ] for PET), the prediction model can be formu-

ated as 
 = C ( F M1 , F M2 , F P1 , F P2 ) . (2) 

http://fil.ion.ucl.ac.uk/spm/software/
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Fig. 2. Illustration of the proposed JSRL framework for SCD conversion prediction with an image synthesis (IS) subnetwork and a representation learning (RL) subnetwork at 

the training phase (a), and prediction for an unseen subject at the test phase (b). A transfer learning strategy is employed in JSRL. 
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.2.2. Joint image synthesis and representation learning 

1) Image Synthesis (IS) Network : As shown in the top panel 

f Fig. 2 , our image synthesis (IS) model is based on a generative

dversarial network (GAN) to synthesize PET and generate multi- 

odal features, with a generator (i.e., G M 

) and a discriminator (i.e., 

 P ). The generator has an encoder with 3 convolutional (Conv) lay- 

rs, a residual part with 6 residual blocks, and a decoder with 

 deconvolutional (Deconv) layers and 1 output Conv layer. The 

hannels of 3 Conv layers are 16, 32 and 64, respectively, with 

ach Conv layer followed by instance normalization and relu acti- 

ation. In the decoder, the channels of 2 Deconv layers are 32 and 

6, respectively, and the output Conv layer is followed by instance 

ormalization and tanh activation. The first and the output Conv 

ayers in G M 

have the filter size of 7 × 7 × 7 , while the remaining

onv and Deconv layers have the filter size of 3 × 3 × 3 . The dis-

riminator contains 5 Conv layers with the channels of 32, 64, 128, 

56 and 1, respectively. The first 3 Conv layers are followed by in- 

tance normalization and leaky relu activation with the leaky rate 

f 0.2. 

Two types of loss functions are used in G M 

, i.e., an adversarial 

oss and a reconstruction loss, defined as 

 (G M 

) = 

∑ 

{ x M ∈ I M , x P ∈ I P } 
‖ 

G M 

(x M 

) − x P ‖ 1 + log ( 1 − D P (G M 

(x M 

)) ) , 

(3) 

here the 1st term is the reconstruction loss (with ‖ · ‖ 1 denoting 

he l 1 norm), and the 2nd term is the adversarial loss. For D P , we

im to minimize the following loss function 

 ( D P ) = 

∑ 

{ x M ∈ I M , x P ∈ I P } 
log ( 1 − D P ( x P ) ) + log ( D P ( G M 

( x M 

) ) ) . (4) 

Constrained by L (G M 

) and L ( D P ) , the trained IS network is 

ncouraged to generate PET images that are visually similar to 

heir corresponding real ones, and also generate multi-scale imag- 

ng features via the encoder and decoder parts. The multi-scale 

eatures will be shared with the following representation learn- 

ng (RL) network for SCD conversion prediction. Note that the pro- 
5 
osed IS model can also generate synthetic MRI scans based on 

ET images. In this work, we focus on generating synthetic PET 

mages based on MRI. The reason is that in clinical practice, we 

sually have MRI but lack PET data, since PET imaging is relatively 

ore expensive and invasive while MRI imaging is less costly and 

oninvasive. 

2) Representation Learning (RL) Network : To capture the asso- 

iation of different modalities, we develop a representation learn- 

ng (RL) network to fuse multi-scale MRI and PET features for SCD 

onversion prediction. Considering that the generator constructs a 

apping between MRI and PET from the same subject, their fea- 

ures generated by the IS network naturally convey their under- 

ying relevance. Accordingly, a multi-scale feature sharing mecha- 

ism is designed to facilitate knowledge transfer between the IS 

nd the RL subnetworks. Specifically, the MRI feature maps (de- 

oted as F M1 and F M2 ) of the first two Conv layers in the encoder

nd the PET feature maps of the last two Deconv layers in the 

ecoder (denoted as F P1 and F P2 ) of G M 

are shared by IS and RL

etworks. 

As shown in the middle panel of Fig. 2 , the RL network consists

f two major components: 1) a multi-modal feature fusion module 

o fuse multi-scale feature maps generated by the IS network, and 

) a classification module to learn high-level semantic features and 

erform prediction. Denote the concatenation of F M1 and F P1 as C1 , 

nd the concatenation of F M2 and F P2 as C2 . In the multi-modal fea-

ure fusion module, C1 is followed by a Conv layer with a stride of 

, while C2 is followed by a Conv layer with a stride of 1. Then,

hese features are concatenated, followed by a max-pooling opera- 

ion. The fused features are then fed into the classification module. 

his classification module contains four successive Conv layers to 

earn high-level semantic features and a fully-connected (FC) layer 

or prediction, where the first 3 and the last Conv layers are fol- 

owed by the max-pooling and average-pooling (stride: 2), respec- 

ively. These four Conv layers have 16 channels with the filter size 

f 3 × 3 × 3 . Feature maps of the last Conv layer are reshaped into

 feature vector (with 1,280 neurons), followed by the FC layer for 

lassification/prediction. We propose a hybrid loss function in RL 
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Fig. 3. Illustration of possible progression of AD-related categories, i.e., cognitive 

normal (CN), subjective cognitive decline (SCD), mild cognitive impairment (MCI) 

and Alzheimer’s disease (AD). The term pCN/pSCD denotes CN/SCD subjects that 

would convert to MCI within a period, and pMCI denotes subjects that would con- 

vert to AD within a period. And sCN, sSCD, and sMCI subjects remain stable. 
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2 https://github.com/Candyeeee/JSRL 
etwork for classification, defined as 

 hybrid = L (G M 

) + λL C , (5) 

here L C is the universal cross-entropy loss that is defined as 

 C = −y log p(x ) − (1 − y ) log ( 1 − p(x ) ) , (6) 

here p(x ) is the estimated probability of x belonging to the cor- 

ect class y . We use the hybrid loss to jointly train the generator

nd the RL network, encouraging that the to-be-generated multi- 

odal representations by the IS network are prediction-oriented. 

he parameter λ is empirically set as 1 in this work. 

.2.3. Transfer learning 

To deal with limited training data, we propose a transfer learn- 

ng solution by leveraging knowledge from the relatively large- 

cale ADNI dataset to the small-scale CLAS dataset. A label trans- 

er strategy is designed to augment training samples, and a model 

ransfer strategy is used for neuroimage imputation and SCD con- 

ersion prediction. 

Figure 3 illustrates the possible progression of four categories, 

ncluding CN, SCD, MCI and AD. Since pCN and pSCD subjects 

ould convert to MCI within a period, we assume that they have 

imilar brain changes in their neuroimages. We denote subjects 

elonging to the five categories (i.e., sNC, pNC, sSCD, pSCD, and 

CI) as SCD-adjacent subjects , and use them to aid SCD conver- 

ion prediction due to their close relationship (i.e., preclinical or 

rodromal stage of AD). We reasonably regard sNC and sSCD as 

ositive samples, and treat pNC, pSCD and MCI as negative sam- 

les in ADNI. Through this label transfer strategy, we train JSRL 

or joint image synthesis and prediction on ADNI, and then apply 

he trained model to CLAS via model transfer. Thus, the knowledge 

earned from ADNI can be transferred to CLAS for SCD conversion 

rediction. 

.2.4. Implementation 

The training of JSRL was performed via two steps. 1) In the 1st 

tep, we trained the GAN (with G M 

and D P ) for 50 epochs in the IS

etwork to impute the missing neuroimages and generate multi- 

odal imaging features. We first trained G M 

by minimizing L ( G M 

) 
ith fixed D P , and then trained D P by minimizing L ( D P ) with fixed 

 M 

, iteratively. 2) In the 2nd step, we jointly trained the genera- 

or G M 

and our RL network for 30 epochs for multi-modal feature 

earning and prediction. The Adam solver with a learning rate of 

 × 10 −3 was used in the IS network. The gradient descent opti- 

izer with a learning rate of 10 −2 was used in the joint training 

f G M 

and the RL network. 

For efficient optimization, we used different training data in dif- 

erent tasks as shown in Tables 1 - 2 . 1) For SCD conversion predic-

ion (i.e., pSCD vs. sSCD classification), we used MRI and PET data 

f 863 subjects (including 205 sCN, 29 pCN and 629 MCI) from 

DNI to train our JSRL model. 2) For MCI conversion prediction 

i.e., pMCI vs. sMCI classification), we used 940 subjects (including 
6 
05 sCN, 325 sMCI, 164 pMCI and 245 AD) from ADNI to train our 

SRL network. The code has been made publicly available 2 . 

. Experiments 

In this section, we first evaluate our method in the task of 

CD conversion prediction, and then perform an ablation study 

o compare different variants of our proposed method. We fur- 

her evaluate the effectiveness of our method on another challeng- 

ng task, i.e. , MCI conversion prediction. Finally, we evaluate the 

ross-database neuroimage synthesis performance of our method 

n ADNI, CLAS and Australian Imaging, Biomarkers and Lifestyle 

AIBL) databases ( Ellis et al., 2009 ). 

.1. Results of SCD conversion prediction 

Experimental Setup We first evaluate the performance of 

ur JSRL in SCD conversion prediction, by comparing JSRL 

ith three multi-modal methods using different handcrafted 

eatures, including 1) gray matter (GM) volume within 116 

egions-of-interest (denoted as ROI ) ( Tzourio-Mazoyer et al., 

002; Rusinek et al., 1991 ), 2) patch-based morphology ( PBM ) 

ethod ( Liu et al., 2014a ), and 3) landmark-based local energy 

atterns ( LLEP ) ( Zhang et al., 2017 ). Features of MRI and PET are

oncatenated in these three methods, followed by a linear support 

ector machine (SVM) for prediction. We also compare JSRL with 

hree methods with different imputation ways, including Zero, 

NN ( Campos et al., 2015 ) and a state-of-the-art deep learning 

ethod called HGAN+SCFR ( Pan et al., 2020 ) with a hybrid genera- 

ive adversarial network (HGAN) and a spatially-constrained Fisher 

epresentation (SCFR) network. The HGAN+SCFR method performs 

mage/feature imputation and neuroimaging feature learning sep- 

rately, which is different from our JSRL model that treats im- 

ge synthesis and classification jointly. Besides, the HGAN+SCFR 

ethod uses a late fusion strategy that first extracts imaging fea- 

ures of MRI and PET individually and then concatenates them at 

he last several Conv layers for prediction. In contrast, the pro- 

osed JSRL uses an early fusion strategy that fuses the multi-modal 

eatures through a multi-modal feature fusion module in the first 

everal Conv layers of the RL network for prediction. In addition, 

he HGAN+SCFR inputs MRI and real/synthetic PET images, while 

ur JSRL inputs multi-modal features generated from the same 

enerator (in the image synthesis network) for prediction. We rea- 

onably infer that the underlying relationship between the multi- 

odal features can be better conveyed by generating them from 

he same generator and fusing them using an early fusion strategy 

or prediction. 

Note that three methods (i.e., ROI, PBM, and LLEP) cannot syn- 

hesize missing PET images, and they extract PET features from the 

eal PET images from ADNI databases during the training phase 

nd our synthetic PET scans via JSRL during the test phase. Be- 

ides, we compare our method with two different f eature im puta- 

ion methods based on ROI-based gray matter volume features, in- 

luding Zero and KNN methods ( Campos et al., 2015 ). In the Zero

ethod, we simply fill the missing values with zeros. In the KNN 

ethod, we fill missing features with its k-nearest neighbor rows 

n the training set. We also compare our method with the single- 

odal counterpart of each competing method, including ROI-M, 

BM-M, LLEP-M and HGAN+SCFR-M that use only MRI data. More 

etails on the competing methods can be found in Supplementary 

aterials . 

For a fair comparison, all competing methods use the same 

ransfer learning strategy as our JSRL. That is, they use SCD- 

djacent subjects as training data (i.e., label transfer), and their 

https://github.com/Candyeeee/JSRL
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Table 3 

Results achieved by different methods in SCD conversion prediction 

(i.e., pSCD vs. sSCD classification), with models trained on ADNI and 

tested on CLAS. Methods marked as “-M” denote that only subjects 

with MRI in ADNI are used for training, while the remaining meth- 

ods employ all subjects with complete MRI and PET in ADNI for 

training. All 76 SCD subjects in CLAS are used as test data. 

Method AUC BAC SPE SEN F1S 

ROI-M 0.621 0.642 0.784 0.500 0.511 

PBM-M 0.592 0.516 0.490 0.542 0.413 

LLEP-M 0.570 0.598 0.529 0.667 0.500 

HGAN + SCFR-M 0.669 0.632 0.596 0.667 0.525 

ROI 0.652 0.614 0.686 0.542 0.490 

PBM 0.546 0.554 0.608 0.500 0.429 

LLEP 0.611 0.536 0.529 0.542 0.426 

Zero 0.648 0.647 0.711 0.583 0.528 

KNN 0.652 0.646 0.750 0.542 0.520 

HGAN + SCFR 0.632 0.553 0.539 0.583 0.452 

JSRL (Ours) 0.747 0.721 0.692 0.750 0.621 
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Table 4 

Results achieved by our method with different strategies in SCD 

conversion prediction (i.e., pSCD vs. sSCD classification), with 

models trained on ADNI and tested on CLAS. The terms “dLT”, 

“oMMRS”, “oJT”, ”-M” and ”-P” denote “different label transfer”, 

“without multi-modal representation sharing”, “without joint 

training”, ”with only MRI features” and ”with only PET features”, 

respectively. 

Method AUC BAC SPE SEN F1S 

JSRL-dLT 0.711 0.683 0.615 0.750 0.581 

JSRL-oMMRS 0.562 0.556 0.404 0.708 0.472 

JSRL-oJT 0.676 0.601 0.596 0.625 0.500 

JSRL-M 0.702 0.644 0.539 0.750 0.546 

JSRL-P 0.593 0.543 0.462 0.462 0.448 

JSRL (Ours) 0.747 0.721 0.692 0.750 0.621 
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odels are trained on ADNI and tested on CLAS (i.e., model 

ransfer). When training deep models, such as HGAN+SCFR-M, 

GAN+SCFR and ours, we randomly partition 20% of each category 

n the training data as the inner validation set to optimize hyper- 

arameters (i.e., the number of epoch and learning rate) and de- 

ermine their values when the corresponding model achieves the 

est performance (in terms of AUC) on the validation set. Then, 

e train the models on all training data by fixing these hyperpa- 

ameters and apply the trained models to the test set. The perfor- 

ance of SCD conversion prediction is measured by the area un- 

er the receiver operating characteristic (AUC), balanced accuracy 

BAC), sensitivity (SEN), specificity (SPE), and F1-Score (F1S). 

Experimental Results The results achieved by nine methods in 

CD conversion prediction are reported in Table 3 . As can be seen 

rom Table 3 , our JSRL method outperforms conventional hand- 

rafted feature based methods (i.e., ROI, PBM, and LLEP), the deep 

earning method (i.e., HGAN+SCFR), and two feature imputation 

ethods (i.e., Zero and KNN) in most cases. This suggests the ef- 

ectiveness of the proposed joint learning framework for image 

ynthesis and multi-modal representation learning. Especially, the 

roposed JSRL achieves an improved SEN value (i.e., 0.750), which 

s 8.3 percent higher than the second-best SEN result (i.e., 0.667 

chieved by LLEP-M and HGAN+SCFR-M). In real-world applica- 

ions, the high sensitivity of JSRL may be very useful to accurately 

dentify subjects with progressive SCD. Besides, compared with 

GAN+SCFR that separately performs image synthesis and classifi- 

ation, JSRL with the proposed joint learning strategy significantly 

oosts the AUC result. This may be due to that joint learning can 

mplicitly harness the complementary information of MRI and PET. 

able 3 also suggests that most methods (trained on ADNI) work 

ell in SCD conversion prediction on CLAS. This implies that the 

roposed transfer learning strategy (with label transfer and model 

ransfer) effectively facilitates knowledge transfer from ADNI to 

LAS. 

.2. Ablation study 

Experimental Setup Our JSRL contains three key components, 

.e., label transfer (LT), multi-modal representation sharing (MMRS) 

echanism, and joint training (JT) of IS and RL subnetworks. To 

nvestigate their influence, we compare JSRL with its three vari- 

nts for ablation analysis, including JSRL-dLT using a different la- 

el transfer strategy, JSRL-oMMRS without sharing features be- 

ween IS and RL subnetworks, and JSRL-oJT that trains IS and 

L subnetworks separately. Besides, to investigate the effective- 

ess of single-modal representations generated from our proposed 

odel on SCD conversion prediction, we compare JSRL with its 
7 
ingle-modal counterparts, namely JSRL-M and JSRL-P . The de- 

ailed network architectures of JSRL-oMMRS, JSRL-M and JSRL-P 

an be found in Figs. S1-S2 in the Supplementary Materials . 

1) JSRL-dLT: This method uses the same training data as JSRL (i.e., 

SCD-adjacent subjects in ADNI), but employs a different label 

transfer strategy by treating CN (with sCN and pCN) as the pos- 

itive category and MCI as the negative category. 

2) JSRL-oMMRS: In the JSRL-oMMRS method, those missing PET 

images are firstly generated from the image synthesis network. 

Then, to generate multi-modal feature inputs of the RL network, 

we perform two sequential convolution operations for MR and 

PET images individually, in which the strides of the first and 

the second Conv layers are 1 and 2, respectively. Finally, the 

separately generated multi-modal representation inputs are fed 

to the RL network, which is similar to the JSRL model. That is, 

our proposed multi-modal representation sharing mechanism is 

not employed in JSRL-oMMRS. 

3) JSRL-oJT: The JSRL-oJT method trains the IS and the RL sub- 

networks separately. In JSRL, we first train the IS network, and 

then train IS and RL subnetworks jointly by optimizing the hy- 

brid loss in Eq. (5) . In JSRL-oJT, the hybrid loss in the RL sub-

network is replaced with a cross-entropy loss to facilitate the 

separate training of the IS and the RL subnetworks. 

4) JSRL-M: In JSRL-M, only MRI representations (i.e., F M1 and F M2 ) 

generated by the encoder part in the image synthesis network 

are fed into the RL network (with the same network architec- 

ture as JSRL). 

5) JSRL-P: In JSRL-P, only PET representations (i.e., F P1 , F P2 ) gener- 

ated by the decoder part in the image synthesis network are 

fed into the RL network (with the same network architecture 

as JSRL). 

Experimental Results The results of our JSRL and its five vari- 

nts in SCD conversion prediction are summarized in Table 4 . 

able 4 suggests that our JSRL with three strategies (i.e., LT, MMRS, 

nd JT) achieves the best performance, while other variants achieve 

he overall degraded performance. Some other interesting observa- 

ions can also be found in Table 4 . 

1) When we use different auxiliary domains (i.e., MCI vs. CN) 

o aid SCD conversion prediction, JSRL-dLT also achieves good re- 

ults (e.g., AUC = 0.711). This suggests that the task of pSCD vs. 

SCD classification is implicitly related to the task of MCI vs. CN 

lassification, since AD is a neurodegenerative disease that devel- 

ps over time. However, part of CN subjects would convert to MCI 

ithin a period (similar to pSCD), which may introduce ambigu- 

us information for SCD conversion prediction. Our proposed la- 

el transfer strategy deliberately regards sCN and pCN subjects 

s positive and negative categories, respectively, aiming to aug- 

ent training samples. Even though only 29 pCN subjects in the 

DNI dataset made the performance difference between JSRL and 
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Fig. 4. Results of five multi-modal (with MRI and PET) methods in MCI conversion 

prediction (i.e., pMCI vs. sMCI classification) on ADNI, where models were trained 

on 939 subjects (with complete MRI and PET scans) and tested on 177 indepen- 

dent MCI subjects (with only MRI). AUC: Area under the ROC curve; BAC: Balanced 

Accuracy. 
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SRL-dLT small, we can imagine the JSRL model will be more ro- 

ust with the increased number of pCN subjects in the training 

et. 2) The JSRL-oMMRS method yields significantly degraded per- 

ormance in comparison to JSRL. This confirms our assumption 

hat the multi-modal representation shared between the IS and RL 

ubnetworks conveys the potential relationship between different 

odalities, thereby helping to improve prediction performance. 3) 

ompared with JSRL-oJT, the joint training (via optimizing a hybrid 

oss) in JSRL helps improve the classification performance. The pos- 

ible reason is that joint training encourages the model to generate 

rediction-oriented features, further constraining the IS model for 

fficient optimization. 4) The JSRL method is also superior to its 

ingle-modal counterparts (i.e., JSRL-M and JSRL-P), which validate 

he effectiveness of multi-modal representations generated by JSRL. 

.3. Application to MCI conversion prediction 

We further evaluate our JSRL in MCI conversion prediction 

i.e., pMCI vs. sMCI classification) on ADNI with incomplete multi- 

odal neuroimaging data. A total of 939 subjects (including 205 

CN, 325 sMCI, 164 pMCI and 245 AD) with complete MRI and 

ET scans are used as the training data for JSRL and the compet- 

ng multi-modal methods. That is, sMCI and sCN are treated as the 

egative category, pMCI and AD are used as the positive category. 

nd 177 subjects (including 81 sMCI and 96 pMCI) with only MRI 

re used as independent test data. All training data and test data 

re from the ADNI-1 and ADNI-2 datasets and the demographic 

nd clinical information of the studied subjects are summarized in 

able 2 . The results of five methods in MCI conversion prediction 

re reported in Fig. 4 . Note that the comparison between differ- 

nt methods in this Fig. 4 is fair, based on the same data and data

artitions. Figure 4 suggests that our JSRL achieves the best AUC 

f 0.838 and ACC of 0.780, which is 4.11 and 5.65 percent higher 

han the second-best AUC and ACC achieved by HGAN+SCFR, re- 

pectively. This validates the effectiveness of the proposed JSRL in 

CI conversion prediction. Results in Tables 3 - 4 and Fig. 4 imply 

ur method can be used as a practical and general learning frame- 

ork for early identification of AD-related disorders with modality- 

issing data. To further validate the generalization ability of the 

roposed method, we also report its results in MCI conversion pre- 

iction on ADNI using a 5-fold cross-validation strategy in Fig. S4 

f the Supplementary Materials . 

Besides, we summarize several state-of-the-art results reported 

n the literature for MCI conversion prediction using neuroimag- 

ng data of ADNI in Table 5 . The results in Table 5 are not

ully comparable, since these studies used different numbers of 

ubjects and different data partitions. With the rough compar- 

son, Table 5 shows that our JSRL method trained on a rela- 

ively large-scale training set obtains competitive performance in 

CI conversion prediction on a relatively balanced test set. Even 
8 
hough the work in ( Lian et al., 2020 ) shows a higher ACC, our

ethod achieves the higher AUC result. The characteristic of yield- 

ng higher AUC values may be advantageous for more confident 

rediction, which is potentially very useful in practice ( Huang and 

ing, 2005 ). 

.4. Cross-database neuroimage synthesis 

To investigate the effectiveness of the proposed image synthe- 

is (IS) subnetwork in JSRL, we further perform cross-database im- 

ge synthesis on three datasets, including 1) ADNI, 2) CLAS, and 3) 

IBL ( Ellis et al., 2009 ). Note that subjects from the ADNI have real

DG-PET images and those from the CLAS and AIBL datasets have 

o real/ground-truth FDG-PET images. Most subjects in the AIBL 

ataset have PET with different tracers (e.g., PIB/Flute-PET), and 

heir appearance looks very different from FDG-PET. The IS model 

s trained on 863 subjects with complete structural MRI and FDG- 

ET from ADNI in the 1st step, and tested on 147 subjects with 

omplete MRI and PET from ADNI (not involved in model training) 

or evaluation. Those 76 subjects with only MRI from CLAS and 235 

ubjects with complete MRI and Flute/PIB PET from AIBL are also 

sed as independent test data for qualitative evaluation. The vi- 

ual results can be found in Fig. S5 of the Supplementary Materials . 

o quantitatively evaluate our IS model, we compute the average 

tructure similarity (SSIM) index and the average peak signal-to- 

oise ratio (PSNR) between the synthetic PET images and the cor- 

esponding real ones of 147 subjects from the ADNI dataset. The 

ean SSIM and PSNR values of synthetic PET in ADNI are 0.70 and 

7.35 dB, respectively. The quantitative results and the visually rea- 

onable results in Fig. S5 suggest that the proposed JSRL can gener- 

te ADNI-like FDG-PET across different datasets. It implies that our 

ethod could be potentially used for multi-site data harmoniza- 

ion in multi-center problems with different scanners or scanning 

rotocols. 

. Discussion 

In this section, we compare our method with relevant studies 

or early diagnosis of AD/MCI, and present the limitations of this 

ork as well as future research directions. 

.1. Comparison with previous studies 

In this work, we developed a multi-modal neuroimaging-based 

ethod to predict the 7-year’s conversion from SCD to MCI of 76 

CD subjects with an unprecedentedly long follow-up time from 

he CLAS study. This task is very challenging due to the lack of PET 

ata and the indistinguishable pathological changes between sSCD 

ubjects and pSCD subjects who are at the very early stage of AD 

ith normal cognition. According to the quantitative results, our 

roposed JSRL method is effective for the conversion prediction of 

CD. 

Several strategies may contribute to the effectiveness of early 

etection of SCD. First , our JSRL leverages the complementary infor- 

ation of multi-modal neuroimages for improving the prediction 

erformances. This is among the first multi-modal neuroimaging- 

ased studies for SCD conversion prediction. Second , the JSRL inte- 

rates image synthesis (IS) and representation learning (RL) into a 

nified framework. Meantime, a multi-modal representation shar- 

ng mechanism is presented in JSRL. That is, the inputs of the 

L network are the multi-modal representations generated by 

he IS network rather than the individually extracted MRI and 

eal/synthetic PET features as in previous work ( Pan et al., 2019; 

iu et al., 2014b ). Due to the mapping relationship from MRI to 

ET learned by the image generator, the underlying relationship of 

ultiple modalities from the same subject can be better preserved 
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Table 5 

Comparison between the proposed JSRL method and the state-of-the-art neuroimaging studies in 

the task of MCI conversion prediction (i.e., pMCI vs. sMCI classification) on the ADNI database. N/P 

(training): Negative/Positive samples in the training set; N/P (test): Negative/Positive samples in the 

test set. 

Method N/P (training) N/P (test) Modality AUC ACC 

Shi et al. (2017) 102/89 6/5 MRI + PET 0.801 0.789 

Suk et al. (2014) 115/68 13/8 MRI + PET 0.747 0.759 

Young et al. (2013) 36/35 42/30 MRI + PET+ APOE+CSF 0.763 0.722 

Lian et al. (2020) 455/197 239/38 MRI 0.781 0.809 

Pan et al. (2020) 477/308 256/89 MRI + PET 0.825 0.778 

JSRL (Ours) 530/409 66/93 MRI + PET 0.838 0.780 
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B  
n the RL network by leveraging the shared multi-modal repre- 

entations from the image generator as inputs. Besides , a multi- 

odal feature fusion module is designed in the RL network for 

arly fusion of multi-modal features, which is different from pre- 

ious methods that extract MRI and PET features separately and 

use them via a late fusion strategy ( Campos et al., 2015; Pan et al.,

020 ). In addition , to address the limited data problem, a transfer 

earning strategy is proposed by leveraging the JSRL learned from a 

arge-scale ADNI database to a small-scale CLAS database, making 

he JSRL method feasible. 

.2. Limitations and future work 

Several issues need to be considered in the future. First , we 

sed a basic GAN architecture for image synthesis, and the im- 

roved performance of our method indicated that IS could produce 

nformative multi-modal features for prediction. It is desired to de- 

ign more advanced networks (e.g., conditional GAN ( Mirza and 

sindero, 2014 ) and bidirectional GAN ( Zhu et al., 2017 )) for IS to

urther improve the discriminative capability of multi-modal rep- 

esentations. Besides , we used only neuroimaging data for predic- 

ion, without considering the demographic information (e.g., age, 

ender, and education) that may also be related to brain sta- 

us ( Yue et al., 2021 ). In future work, we will employ demo-

raphic information to constrain the learned models. Furthermore , 

e designed a transfer learning strategy by leveraging knowledge 

earned from ADNI to CLAS, and did not explicitly consider the dis- 

ribution gap between these two databases. Since the ADNI con- 

ains primarily Caucasian brains and the CLAS consists of Asian 

rains, it is interesting to develop advanced data harmonization 

ethods ( Kamnitsas et al., 2017 ) to reduce the distribution shift 

etween two databases, which will also be our future work. 

. Conclusion 

In this paper, we presented a joint neuroimage synthesis and 

epresentation learning (JSRL) framework for SCD conversion pre- 

iction based on incomplete and limited multi-modal neuroimages. 

he JSRL consisted of an image synthesis subnetwork for imputing 

issing images and a representation learning subnetwork for pre- 

iction. The two subnetworks were incorporated into a joint learn- 

ng framework by sharing multi-modal features. A transfer learn- 

ng strategy was also designed to facilitate the knowledge transfer 

etween training and test data. Experiments were conducted on 

hree databases, including the ADNI with MRI and FDG-PET, the 

LAS with only MRI, and the AIBL with MRI and Flute/PIB PET. The 

xperimental results suggested the efficacy of JSRL in the tasks of 

CD and MCI conversion prediction and cross-database neuroimage 

ynthesis, compared with several state-of-the-art methods. 
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